Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

ÉCOLE POLYTECHNIQUE M O N T R É A L

A Fast Algorithm to Locate Concepts in Execution Traces

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

SOCCER Lab. & Ptidej Team, Ecole Polytechnique de Montréal, Québec, Canada University of Sannio, Italy

September 12, 2011

A Fast Algorithm to Locate Concepts in Execution Traces	Outline
Soumaya Medini, Philippe Galinier, Massimiliano Di Penta,	Introduction
Yann-Gaël Guéhéneuc, Giuliano Antoniol	Motivation a
Introduction	Background
Motivation and Problem Statement	Our approac
Background Our approach	Empirical St
Empirical Study Conclusion	Conclusion
Future Work References	Future Work
	References

and Problem Statement ch tudy k

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Introduction

Concept location aims at identifying user-observable features and locating them within code regions

A typical scenario in which concept location takes part:

- A failure has been observed in a software system under certain execution conditions;
- Such conditions are hard to reproduce;
- An execution trace was saved during failure.

Result: An execution trace containing a failure is saved but we can not re-execute the same scenario.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Motivation and Problem Statement

- Concept location process as trace segmentation problem.
- Use textual content of methods to split execution trace into segments that implement concepts.

We attempt to automatically identify concepts in a single execution trace.

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Motivation and Problem Statement

Asadi *et al.* [Asadi et al., 2010]: identify concepts in execution trace by finding cohesive and decoupled fragments of the trace.

Limitations

- Not scalable (thousands of methods).
- Stability problems: each run may produce a different concept assignment.

We propose a novel approach to overcome these limitations.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach Empirical Study Conclusion

Future Work

References

Background

Steps:

- Step 1: System instrumentation and trace collection;
- Step 2: Pruning and compressing traces;
- Step 3: Textual analysis of Method source code;
- Step 4: Search-based concept location.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach Empirical Study Conclusion Future Work

References

Background

Step 1: System Instrumentation and Trace Collection

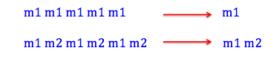
- System instrumented using MODEC: tool to extract and model sequence diagrams.
- Trace is an ordered list of invoked methods.
- Trace includes labels manually set around parts of the code during the execution of the instrumented system.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background


Our approach Empirical Study Conclusion Future Work

References

Background

Step 2: Pruning and Compressing Traces

- Pruning: Remove too frequent methods having invocations greater than Q3 + 2 × IQR.
- Compression: Remove repetitions of method invocations using Run Length Encoding (RLE) algorithm.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach Empirical Study Conclusion

References

Background

Step 3: Textual Analysis of Method Source Code

- Extract terms from source code: identifiers and comments.
- Remove programming language keywords and english stop words.
- Split terms using Camel-Case.
- Perform stemming.
- Index terms and documents using the *tf-idf* indexing mechanisms.
- Apply Latent Semantic Indexing (LSI) to reduce the term-document matrix.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation an Problem Statement

Background

Our approach

Empirical Study Conclusion Future Work

Our approach

Approach built upon a dynamic programming algorithm to:

- Compute the exact split of an execution trace into segments.
- Improve scalability.

Dynamic programming: method to solve a problem by dividing the problem into sub-problems that are recursively solved.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation an Problem Statement

Background

Our approach

Empirical Stud

Conclusion

Future Work

References

Our approach

The solution of the problem is obtained by combining the solutions of the sub-problems.

We compute the quality of the segmentation of a trace split into K segments using the fitness function.

$$COH_{I} = \frac{\sum_{i=begin(l)}^{end(l)-1} \sum_{j=i+1}^{end(l)} \sigma(m_{i},m_{j})}{(end(l)-begin(l)+1)\cdot(end(l)-begin(l))/2}$$
(1)

$$COU_{I} = \frac{\sum_{i=begin(l)}^{end(l)} \sum_{j=1,j < begin(l) \text{ or } j > end(l)} \sigma(m_{i},m_{j})}{(N-(end(l)-begin(l)+1))\cdot(end(l)-begin(l)+1)}$$
(2)

$$fitness = \frac{1}{K} \cdot \sum_{i=1}^{K} \frac{COH_{i}}{COU_{i}+1}$$
(3)

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Our approach

	Execut					
m1	m2	m1	m3	m4	m1	m5
				-		

Segment 1			Segm		
m1	m2	m1	_m3	m4	m1

Possibilies

- New segment is added;
- The method is attached to the last solution segment.

Introduction

Motivation an Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Empirical Study

- RQ1: How do the performances of the GA and DP approaches compare in terms of fitness values, convergence times, and number of segments?
- RQ2: How do the GA and DP approaches perform in terms of overlaps between the automatic segmentation and the manually-built oracle, i.e., recall?
- RQ3: How do the precision values of the GA and DP approaches compare when splitting execution traces?

Introduction

Motivation and Problem Statement

Backgroun

Our approach

Empirical Study

Conclusion

Future Work

References

Empirical Study

Systems	Scenarios	Original Size	Cleaned Sizes	Compressed Sizes
	(1)Start, Create note, Stop	34,746	821	588
ArgoUML v0.18.1	(2) Start, Create class, Create note, Stop	64,947	1,066	764
	(1) Start, Draw rectangle, Stop	6,668	447	240
JHotDraw v5.1	(2) Start, Add text, Draw rectangle, Stop	13,841	753	361
	(3) Start, Draw rectangle, Cut rectangle, Stop	11,215	1,206	414
	(4) Start, Spawn window, Draw circle, Stop	16,366	670	433

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Empirical Study

RQ1 Results

Compare the GA approach proposed by Asadi *et al.* [Asadi et al., 2010] with our approach.

System	Scenario	# of Segments		Fitness		Time (s)	
System	Scenario	GA	DP	GA	DP	GA	DP
ArgoUML	(1)	24	13	0.54	0.58	7,080	2.13
ArgoUNL	(2)	73	19	0.52	0.60	10,800	4.33
	(1)	17	21	0.39	0.67	2,040	0.13
JHotDraw	(2)	21	21	0.38	0.69	1,260	0.64
	(3)	56	20	0.46	0.72	1,200	0.86
	(4)	63	26	0.34	0.69	240	1.00

The DP approach performs significantly better than the GA approach.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Backgroun

Our approach

Empirical Study

Conclusion

Future Work

References

Empirical Study

RQ2 and RQ3 Results

Compare DP splitting results and manually splitted trace.

System	Scenario	Feature	Jaccard		Precision	
System	System Scenario Featu		GA	DP	GA	DP
	(1)	Create Note	0.33	0.87	1.00	0.99
ArgoUML	(2)	Create Class	0.26	0.53	1.00	1.00
	(2)	Create Note	0.34	0.56	1.00	1.00
	(1)	Draw Rectangle	0.90	0.75	0.90	1.00
JHotDraw	(2)	Add Text	0.31	0.33	0.36	0.39
	(2)	Draw Rectangle	0.62	0.52	0.62	1.00
	(3)	Draw Rectangle	0.74	0.24	0.79	0.24
	(3)	Cut Rectangle	0.22	0.31	1.00	1.00
	(4)	Draw Circle	0.82	0.82	0.82	1.00
	(4)	Spawn window	0.42	0.44	1.00	1.00

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Conclusion

- We reformulated the trace segmentation problem as a dynamic programming (DP) problem:
 - We showed that we can benefit from the overlapping sub-problems
 - We obtained a dramatic gain in performance reusing computed scores of intervals and segmentation scores.
- The DP approach reuses pre-computed cohesion and coupling values among subsequent segments of an execution trace, which is not possible using GA.
- Results showed that the DP approach significantly out-performed the GA approach in terms of:
 - The times required to produce the segmentations;
 - The scalability.

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Future Work

- Validate the scalability of the DP trace segmentation approach using larger traces.
- Use more traces obtained from different systems, to verify the generality of our findings.
- Complement the approach with segment labeling to make the produced segments more suitable for program-comprehension activities.

Soumaya Medini, Philippe Galinier, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, Giuliano Antoniol

Introduction

Motivation an Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Asadi, F., Penta, M. D., Antoniol, G., and Guéhéneuc, Y.-G. (2010).

A heuristic-based approach to identify concepts in execution traces.

In Proceedings of the European Conference on Software Maintenance and Reengineering, pages 31–40. IEEE Computer Society Press.