
A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

A Fast Algorithm to Locate
Concepts in Execution Traces

Soumaya Medini, Philippe Galinier, Massimiliano Di
Penta,

Yann-Gaël Guéhéneuc, Giuliano Antoniol

SOCCER Lab. & Ptidej Team, Ecole Polytechnique de Montréal, Québec,
Canada

University of Sannio, Italy

September 12, 2011



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Outline

Introduction

Motivation and Problem Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

2 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Introduction

Concept location aims at identifying user-observable features
and locating them within code regions

A typical scenario in which concept location takes part:
I A failure has been observed in a software system under

certain execution conditions;

I Such conditions are hard to reproduce;

I An execution trace was saved during failure.

Result: An execution trace containing a failure is saved but
we can not re-execute the same scenario.

3 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Motivation and Problem Statement

I Concept location process as trace segmentation
problem.

I Use textual content of methods to split execution trace
into segments that implement concepts.

We attempt to automatically identify concepts in a single
execution trace.

4 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Motivation and Problem Statement

Asadi et al. [Asadi et al., 2010]: identify concepts in
execution trace by finding cohesive and decoupled fragments
of the trace.

Limitations
I Not scalable (thousands of methods).

I Stability problems: each run may produce a different
concept assignment.

We propose a novel approach to overcome these limitations.

5 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Background

Steps:
I Step 1: System instrumentation and trace collection;

I Step 2: Pruning and compressing traces;

I Step 3: Textual analysis of Method source code;

I Step 4: Search-based concept location.

6 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Background
Step 1: System Instrumentation and Trace Collection

I System instrumented using MODEC: tool to extract
and model sequence diagrams.

I Trace is an ordered list of invoked methods.

I Trace includes labels manually set around parts of the
code during the execution of the instrumented system.

7 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Background
Step 2: Pruning and Compressing Traces

I Pruning: Remove too frequent methods having
invocations greater than Q3 + 2 x IQR.

I Compression: Remove repetitions of method invocations
using Run Length Encoding (RLE) algorithm.

8 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Background
Step 3: Textual Analysis of Method Source Code

I Extract terms from source code: identifiers and
comments.

I Remove programming language keywords and english
stop words.

I Split terms using Camel-Case.

I Perform stemming.

I Index terms and documents using the tf-idf indexing
mechanisms.

I Apply Latent Semantic Indexing (LSI) to reduce the
term-document matrix.

9 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Our approach

Approach built upon a dynamic programming algorithm to:

I Compute the exact split of an execution trace into
segments.

I Improve scalability.

Dynamic programming: method to solve a problem by
dividing the problem into sub-problems that are recursively
solved.

10 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Our approach

The solution of the problem is obtained by combining the
solutions of the sub-problems.
We compute the quality of the segmentation of a trace split
into K segments using the fitness function.

COHl =

∑end(l)−1
i=begin(l)

∑end(l)
j=i+1 σ(mi ,mj )

(end(l)−begin(l)+1)·(end(l)−begin(l))/2
(1)

COUl =

∑end(l)
i=begin(l)

∑l
j=1,j<begin(l) or j>end(l)σ(mi ,mj )

(N−(end(l)−begin(l)+1))·(end(l)−begin(l)+1)
(2)

fitness =
1

K
·

K∑
i=1

COHi

COUi + 1
(3)

11 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Our approach

Possibilies
I New segment is added;

I The method is attached to the last solution segment.

12 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Empirical Study

I RQ1: How do the performances of the GA and DP
approaches compare in terms of fitness values,
convergence times, and number of segments?

I RQ2: How do the GA and DP approaches perform in
terms of overlaps between the automatic segmentation
and the manually-built oracle, i.e., recall?

I RQ3: How do the precision values of the GA and DP
approaches compare when splitting execution traces?

13 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Empirical Study

Systems Scenarios O
ri
g
in
a
l
S
iz
e

C
le
a
n
ed

S
iz
es

C
o
m
p
re
ss
ed

S
iz
es

ArgoUML v0.18.1
(1)Start, Create note, Stop 34,746 821 588
(2) Start, Create class,
Create note, Stop

64,947 1,066 764

JHotDraw v5.1

(1) Start, Draw rectangle,
Stop

6,668 447 240

(2) Start, Add text, Draw
rectangle, Stop

13,841 753 361

(3) Start, Draw rectangle,
Cut rectangle, Stop

11,215 1,206 414

(4) Start, Spawn window,
Draw circle, Stop

16,366 670 433

14 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Empirical Study
RQ1 Results

Compare the GA approach proposed by Asadi et al.
[Asadi et al., 2010] with our approach.

System Scenario
# of Segments Fitness Time (s)
GA DP GA DP GA DP

ArgoUML
(1) 24 13 0.54 0.58 7,080 2.13
(2) 73 19 0.52 0.60 10,800 4.33

JHotDraw

(1) 17 21 0.39 0.67 2,040 0.13
(2) 21 21 0.38 0.69 1,260 0.64
(3) 56 20 0.46 0.72 1,200 0.86
(4) 63 26 0.34 0.69 240 1.00

The DP approach performs significantly better than the GA
approach.

15 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Empirical Study
RQ2 and RQ3 Results

Compare DP splitting results and manually splitted trace.

System Scenario Feature
Jaccard Precision

GA DP GA DP

ArgoUML
(1) Create Note 0.33 0.87 1.00 0.99
(2) Create Class 0.26 0.53 1.00 1.00
(2) Create Note 0.34 0.56 1.00 1.00

JHotDraw

(1) Draw Rectangle 0.90 0.75 0.90 1.00
(2) Add Text 0.31 0.33 0.36 0.39
(2) Draw Rectangle 0.62 0.52 0.62 1.00
(3) Draw Rectangle 0.74 0.24 0.79 0.24
(3) Cut Rectangle 0.22 0.31 1.00 1.00
(4) Draw Circle 0.82 0.82 0.82 1.00
(4) Spawn window 0.42 0.44 1.00 1.00

16 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Conclusion

I We reformulated the trace segmentation problem as a
dynamic programming (DP) problem:

I We showed that we can benefit from the overlapping
sub-problems

I We obtained a dramatic gain in performance reusing
computed scores of intervals and segmentation scores.

I The DP approach reuses pre-computed cohesion and
coupling values among subsequent segments of an
execution trace, which is not possible using GA.

I Results showed that the DP approach significantly
out-performed the GA approach in terms of:

I The times required to produce the segmentations;
I The scalability.

17 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Future Work

I Validate the scalability of the DP trace segmentation
approach using larger traces.

I Use more traces obtained from different systems, to
verify the generality of our findings.

I Complement the approach with segment labeling to
make the produced segments more suitable for
program-comprehension activities.

18 / 18



A Fast Algorithm
to Locate

Concepts in
Execution Traces

Soumaya Medini,
Philippe Galinier,
Massimiliano Di

Penta,
Yann-Gaël

Guéhéneuc,
Giuliano Antoniol

Introduction

Motivation and
Problem
Statement

Background

Our approach

Empirical Study

Conclusion

Future Work

References

Asadi, F., Penta, M. D., Antoniol, G., and Guéhéneuc,
Y.-G. (2010).
A heuristic-based approach to identify concepts in
execution traces.
In Proceedings of the European Conference on Software
Maintenance and Reengineering, pages 31–40. IEEE
Computer Society Press.

18 / 18


	Introduction
	Motivation and Problem Statement
	Background
	Our approach
	Empirical Study
	Conclusion
	Future Work
	References

